sâmbătă, 9 februarie 2013

ORDINEA EFECTUARII OPERATIILOR



ORDINEA EFECTUARII OPERATIILOR

Folosirea parantezelor in exercitii

În exercitiile de matematică se folosesc trei tipuri de paranteze. Acestea sunt: accolade { }, drepte [ ] şi rotunde ( ), şi apar întotdeauna în pereche.
Rezolvarea unui exerciţiu în care apar cele trei tipuri de paranteze se face în felul următor:
  1. Efectuăm mai întâi operaţiile din parantezele rotunde, apoi scriem din nou exerciţiul şi transformăm parantezele acolade în paranteze drepte, iar parantezele drepte în paranteze rotunde, punând în locul parantezelor rotunde rezultatul obţinut.
  2. Continuăm tot cu efectuarea operaţiilor din parantezele rotunde – ( ) -, scriem din nou exerciţiul,  transformând parantezele drepte – [ ] – în paranteze rotunde – ( ) -, având grijă să înlocuim rezultatul obţinut anterior.
  3. Am ajuns la ultimele operaţii din parantezele rotunde, pe care le vom efectua.
Trebuie precizat că atunci când efectuăm operaţiile din parantezele rotunde ţinem cont de ordinea efectuării operaţiilor: întâi operaţiile de ordinul II (înmulţirea şi împărţirea), apoi cele de ordinul I (adunarea şi scăderea).
Voi exemplifica acest lucru prin rezolvarea unui exerciţiu. Iată-l:
{ 12 + 3 x [ 20-2 x (7 - 10 : 5 ) ] +13 } x 10 = 550
Luăm operaţiile din parantezele rotunde, 7 – 10 : 5 = 7 – 2 = 5 (am făcut mai întâi împărţirea, 10 : 5 = 2 şi apoi scăderea, 7 – 2 = 5 ).
Scriem din nou exerciţiul, înlocuim rezultul obţinut, transformăm corespunzător parantezele şi obtinem:
[ 12 + 3 x (20 -2 x 5 ) + 13 ] x 10 = 550
Repetăm paşii, ca mai sus, şi obţinem:
20 – 2 x 5 = 20 – 10 = 10 (am făcut înmulţirea, 2 x 5 = 10, şi apoi scăderea, 20 – 10 = 10 ).
Reluăm înlocuirea şi transformarea parantezelor şi obţinem:
( 12 + 3 x 10 + 13 ) x 10 = 550
Rezolvăm operaţiile dintre paranteze, ţinând cont de ordinea efectuării operaţiilor, 12 + 3 x 10 + 13 = 12 + 30 + 13 = 42 + 13 = 55 (am făcut înmulţirea 3 x 10 = 30, apoi adunarea 12+30=42, şi în sfârşit 42 + 13 = 35).
În final obţinem
55 x 10 = 550
Vom pune peste tot după semnul egal rezultatul obţinut, 550.
Rezolvarea se putea aranja şi în felul următor:
{ 12 + 3 x [ 20 – 2 x ( 7 – 10 : 5 ) ] + 13 } x 10 =
= { 12 + 3 x [20 – 2 x (7 - 2) ] + 13 } x 10 =
= [12 + 3 x (20 – 2 x 5) + 13 ] x 10 =
= [12 + 3 x (20 – 10) + 13] x 10 =
= (12 +3 x 10 + 13) x 10 =
= (12 + 30 + 13) x 10 = (42 + 13) x 10 =
= 55 x 10 = 550
Eu consider că primul mod prezentat este mai uşor, mai accesibil pentru un elev, al doilea necesitând mult mai multă atenţie. Dar fiecare elev îşi va alege modul de rezolvare pe care l-a înţeles mai bine.

Niciun comentariu:

Trimiteţi un comentariu